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Abstract 

Background:  Logistic regression (LR) is a widely used classification method for modeling binary outcomes in many 
medical data classification tasks. Researchers that collect and combine datasets from various data custodians and 
jurisdictions can greatly benefit from the increased statistical power to support their analysis goals. However, combin-
ing data from different sources creates serious privacy concerns that need to be addressed.

Methods:  In this paper, we propose two privacy-preserving protocols for performing logistic regression with the 
Newton–Raphson method in the estimation of parameters. Our proposals are based on secure Multi-Party Computa-
tion (MPC) and tailored to the honest majority and dishonest majority security settings.

Results:  The proposed protocols are evaluated against both synthetic and real-world datasets in terms of efficiency 
and accuracy, and a comparison is made with the ordinary logistic regression. The experimental results demonstrate 
that the proposed protocols are highly efficient and accurate.

Conclusions:  Our work introduces two iterative algorithms to enable the distributed training of a logistic regres-
sion model in a privacy-preserving manner. The implementation results show that our algorithms can handle large 
datasets from multiple sources.
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Background
Patient data (i.e., medical records and genomes) are being 
collected at a rapid pace around the world, and the vol-
ume of data is exponentially growing. In order to boost 
the power of statistical analysis and the robustness of 
machine learning models over these data sets, more 
samples are needed. One way the hospitals and research 
institutions can  tackle the scarcity of data  is to collabo-
rate with each other by sharing data and findings in a 
central location. The key advantages of data sharing and/
or  collaborative data  processing include more accurate 
disease identification and diagnosis, risk calculation for a 
certain disease, and therapeutic discovery.

Various data analytic techniques can be employed 
to infer information from a  given  datasets. The logistic 
regression model [1], one of the most popular prediction 
models, is now widely used in medical research. Logis-
tic regression estimates a particular event’s probability 
based on previously observed data. More specifically, the 
value of a binary variable is predicted based on several 
independent variables. For example, a  logistic regres-
sion can be trained for the identification of a malignant 
breast cancers based on tumor size, patient age, blood 
type, and genetic inheritance [2]. Statistical models need 
a sufficiently large sample size to  achieve a desired level 
of performance in data analysis and to make more accu-
rate predictions  [3]. It is thus beneficial to combine and 
compare data from different sources to ensure generalis-
ability  in data representation. However, collecting data 
from multiple sources often raises concerns about pri-
vacy. Due to institutional policies and legal restrictions, 
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hospitals and medical centers are often reluctant to share  
their sensitive data (i.e., especially patient-level informa-
tion) with other institutions. Therefore, it is essential to 
employ privacy-preserving solutions when making statis-
tical inferences over shared data [4].

In this paper, our particular focus is on enabling logistic 
regression between multiple data holders    in a privacy-
preserving manner. We assume that the data are horizon-
tally partitioned, which indicates that the data holders 
have precisely the same variables but different values 
for those variables. Moreover, we assume that Newton-
Raphson method is used to estimate model parameters. 
Based on these assumptions, we propose two methods to 
train a logistic regression model under different security 
assumptions. Thus, the main contributions of this paper 
include:

•	 A novel privacy-preserving algorithm for computing 
logistic regression models that is highly accurate and 
has an acceptable efficiency.

•	 A second algorithm that is highly efficient but less 
accurate due to the use of multiple approximations.

•	 Implementation of the proposed algorithms in both 
honest and dishonest majority security settings.

•	 Evaluation of the proposed protocols on various real-
world and generated synthetic datasets.

Related work
The literature contains a several research works that pre-
sent privacy-preserving methods for the computation of 
logistic regression across multiple data holders. In gen-
eral, the common approach has been the implementation 
of various steps in logistic regression by using primi-
tives from cryptographic techniques such as multi-party 
computation, homomorphic encryption, and differential 
privacy. However, due to the complexity of the underly-
ing secure computation primitives and the way they are 
employed, the existing methods suffer from multiple 
drawbacks regarding scalability and accuracy.

The Grid Binary LOgistic REgression (GLORE) model 
was developed by Wu et  al. [5] to support privacy-
preserving logistic regression in a distributed setting. 
GLORE estimates global model parameters for hori-
zontally partitioned data without necessarily sharing 
patients. Instead of directly sharing sensitive data with 
other institutes, the decomposable intermediary results 
with significantly less sensitive information are trans-
ferred to build a global training protocol for logistic 
regression. However, in their proposed methods, sensi-
tive data could be leaked due to disclosure of the infor-
mation matrix and summary statistics.

Shi et  al. [6] proposed a secure multi-party computa-
tion framework for grid logistic regression (SMAC-
GLORE), which protects the patient data’s confidentiality 
and privacy. SMAC-GLORE preserves the intermedi-
ate results with the help of garbled circuits during itera-
tive model learning. Various approaches, such as secure 
matrix multiplication and addition, and fixed-Hessian 
methods, have been employed to estimate the maximum 
likelihood function. Nevertheless, due to the garbled cir-
cuit constraints, SMAC-GLORE cannot handle a large 
number of records and features. Furthermore, it uses the 
Taylor series approximation approach to evaluate the 
sigmoid function, which causes accuracy loss in the final 
result.

Xie et al. [7] developed PrivLogit, which performs dis-
tributed privacy-preserving logistic regression and uses 
Yao’s garbled circuits and Paillier encryption. PrivLogit 
needs the data owners to perform computations on their 
data before encryption to compute parts of a logistic 
regression matrix resulting with an expensive computa-
tional cost to calculate the intermediate results.

SecureML [8] was one of the fastest protocols for pri-
vacy-preserving logistic regression models training based 
on secure MPC. The SecureML protocol is divided into 
an offline (to generate and distributing multiplication tri-
ples) and an online phase. SecureML employs a multipli-
cation protocol based on a straightforward and efficient 
security setting introduced by Beaver [9]. To compute the 
activation functions, they also introduced a new compar-
ison-based activation function that converges to 0 and 1. 
Unlike our work that employs the Newton Raphson opti-
mization method, SecureML focuses on the mini-batch 
gradient descent.

Cock et al. [10] proposed an information-theoretically 
privacy-preserving model training protocol that employs 
secret sharing-based building blocks such as distributed 
multiplication, distributed comparison, bit-decompo-
sition of shares. Similar to SecureML, their proposed 
protocol requires multiplication triples distributed dur-
ing a setup phase with/or without a trusted authority. 
Unlike SecureML, which is secure in the computational 
context, they engage in the information-theoretic model 
using secret sharing-based MPC and employ commod-
ity-based cryptography [9] to decrease the number of 
communications.

In addition to MPC-based solutions, two popular 
methods have been considered. The first one is homo-
morphic encryption [11], which allows for computation 
to be performed over encrypted data.This method has 
been applied to privacy-preserving logistic regression in 
various works [12–18]. In most of these mentioned 
works, polynomial approximations need to be made 
to evaluate non-linear functions in machine-learning 
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algorithms. The second method is differential privacy, 
a universally accepted mathematical structure for pro-
tecting data privacy. The main application of differential 
privacy in machine learning is when the model is pub-
licly published after training in a way that personal data 
points cannot be distinguished from the released model 
[19–22].

Preliminaries
In this section, we first present our system models along 
with the security assumptions. We then provide an over-
view of the secret sharing protocols used in our work and 
briefly present logistic regression.
System model
Inline with the literature  [8, 23], we consider a set of 
input parties that aim to train a logistic regression model 
on their sensitive data and assume that the data are hori-
zontally partitioned among the input parties, i.e. each 
independent database contains only a sub-population. 
The input parties send secret shares of their inputs to a 
set of computation parties in a setup phase that is per-
formed only once.

With regards to security, we consider three concerns 
when training a privacy-preserving logistic regression 
model. The first concern is the risk of colluding two or 
more parties involved in the protocols against other par-
ties. The collusion might happen when two or more com-
putation parties try to reconstruct the original data in the 
protocol by pooling their views. A computation party’s 
view comprises its private input, generated random data, 
intermediate values, and a list of all messages received 
during the execution of the protocol. For instance, a mali-
cious computing party may try to modify the messages 
to break the privacy of the input parties. To do this, the 
computing party needs information from other parties to 
see how its changes affect the final output. Therefore, it 
requires to collude with the other computing parties and 
collect all the computed shared values to achieve its goal. 
Notably, in this work, our goal is not to design protocols 
that prevent collusion but to define non-colluding parties 
for the security guarantee of the protocol so that multi-
ple parties can not combine their views in order to learn 
extra information.

The second issue is the independence of involved par-
ties in these protocols. If an adversary controls one party, 
the other parties should behave honestly. We assume 
that each of the computation and input parties  are 
independent.

Lastly, one or more computation parties may get cor-
rupted. We assume that the corrupted party follows the 
protocol but may try to learn as much as possible from 
the messages they receive from other parties and tries to 
compute the inputs and outputs of honest parties based 

on all the available information. The corrupted parties 
are also commonly called honest-but-curious. The num-
ber of corrupted computation parties tolerated depends 
on selected security assumptions.

More specifically, we consider the security of our sys-
tem under two settings:

•	 Honest (non-corrupted) majority In this setting, the 
adversary may actively corrupt t computation parties, 
s.t. t < n/2 . We address this case in a three-party set-
ting where, at most, one party can be corrupted.

•	 Dishonest (corrupted) majority In the second case, 
the corrupted parties could be the majority, that is 
the number of corrupted parties could be more than 
or equal to half of the participants (i.e. t ≥ n/2 ). To 
achieve the highest efficiency, we address this case in 
the two-party setting where only one of the computa-
tion parties can be corrupted.

This paper propose logistic regression training protocols 
for both of these security settings.

Secret sharing
Secret sharing is a set of techniques that allows a secret 
value x to be distributed among n participants as 
x1, . . . , xn so that each party Pi receives a random share 
xi (mod  p) of the secret over some prime p.1 In secret 
sharing-based secure computation schemes, a number 
of sensitive data holders (input parties) can secretly share 
their data among other participants. In this paper, we use 
the n-out-of-n additive secret sharing scheme. In this 
scheme, an integer u is additively shared (meaning the 
shares sum to u) between n participants. To do this, each 
input party picks n− 1 randomly generated values and 
sends them to all other participants. The last party is pro-
vided by the secret u minus the sum of those randomly 
generated values. The original value can be reconstructed 
by computing the summation of all of the shares.

In what follows, we will use [[x]] to denote secret shares 
that reconstruct to x. A share [[x]] is an n-tuple with each 
computing party holding precisely one element of the 
tuple and [[x]]i denotes the share held by the ith party.

Addition and multiplication
Various operations can be performed on secret shared 
data through the tailored protocols. In accordance with 
the security models discussed in the preceding “System 
model” section,  in our work,  we employ addition and 
multiplication as the key operations. We closely follow 

1  We drop the modular notation for the sake of conciseness in the rest of the 
paper.
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the notation used in [24] to present the protocols to per-
form these operations.

The addition of two secrets can be performed locally as 
follows: [[x]] + [[y]] = ([[x]]1 + [[y]]1, [[x]]2 + [[y]]2, . . . , [[x]]n + [[y]]n) . 
The multiplication of the additively secret shared values, 
on the other hand, requires network communication and 
calls for a different treatment for each security setting we 
consider.

In the honest majority setting, we use the multiplica-
tion protocol proposed by Bogdanov et al. [25] (classical 
approach) and refined in [24]. In this protocol, the multi-
plication of two additively secret shared values x and y, is 
computed in the three-party setting as follows:

where p(i) indicates the index of the previous computa-
tion party. Eq.  1 implies that each computation party 
requires its adjacent computation party’s input share and 
if i = 1 then the previous party is 3, thus forming a loop. 
Therefore, each computation party transfers the shares of 
inputs x and y it received earlier to the next party to com-
pute the following equation:

where [[w]]i is a share of the multiplication result calcu-
lated by the computation party i. However, as also noted 
by Bogdanov et  al. [25], sending the input share to the 
nearby computation party may give an advantage to 
an adversary who may have observed earlier shares. To 
address this issue, they introduced a re-sharing protocol 
to construct a new share from an input share for each 
computation party at the beginning and end of the multi-
plication operation.

In the dishonest majority setting, we use the Bea-
ver triples technique [26] to perform the multiplication 
operation. This method requires the presence of a trusted 
initializer which pre-distributes the shares ( [[a]] , [[b]] , [[c]] ) 
of multiplication triple (a, b, c) between the computation 
parties in such a way that a and b are randomly generated 
and c = a.b . Once the shares of the input and the triple 
are received, each computation party computes [[d]] = 
[[x]] − [[a]] and [[e]] = [[y]] − [[b]] locally and then reveal [[d]] 
and [[e]] to other parties. By using these shares, the par-
ties can reconstruct d and e. Since a and b are randomly 
generated, revealing the shares of d and e does not com-
promise the security of the protocol. Given these values, 
each party locally computes:

(1)

(x1 + x2 + x3)(y1 + y2 + y3) = (x1y1 + x1y3 + x3y1)

+(x2y2 + x2y1 + x1y2)+ (x3y3 + x3y2 + x2y3)

=

3
∑

i=1

xiyi + xiyp(i) + xp(i)yi

[[w]]i = [[x]]i.[[y]]i + [[x]]p(i).[[y]]i + [[x]]i.[[y]]p(i)

where [[w]]i is a share of the result of the multiplication 
calculated by the computation party i.

It is important to note that after distributing the shares 
of the multiplication triple, the trusted initializer will not 
be involved in the rest of the protocol.

Matrix inversion
As we will explain in “Methods” section , matrix inver-
sion operation is required in order to implement logistic 
regression. The secret sharing based protocols discussed 
in the previous section support only addition and mul-
tiplication operations, and the accurate (as opposed to 
approximate) implementation of matrix inversion with 
these protocols incurs a significant computational cost. 
To address this issue, we use the approximation method 
introduced by Nardi et al. [27]. Nardi’s method converts 
the matrix inversion problem into an iterative procedure 
of matrix multiplication and addition. In this method, we 
look for a matrix B that is equal to the inversion of the 
matrix X. The main idea is to define a function f(x) for 
which matrix X represents its root. More formally:

To find the root of the function f, Nardi suggested the 
use of the Newton–Raphson method [28]. Thus, a stable 
numerical iterative approximation takes the following 
form:

where Ms = BsA , B0 and M0 are the initial guesses, I is an 
identity matrix, and c is a constant. After convergence, Bs 
contains an approximation of matrix X’s inversion.

Logistic regression
Logistic regression is a statistical technique that is com-
monly used in machine learning tasks. It predicts the 
probability whether a dependent variable belongs to a 
particular class. This paper will consider the binary clas-
sification, where there are only two possible classes. The 
logistic model is intended to describe a probability, which 
is always a number between 0 and 1.

Let D = {(X , y)} = {(x1, y1), (x2, y2) , . . . , (xn, yn)} be a 
training dataset of n records, where xi is the m-dimen-
sional feature vector of each record and the yi is a vector 
of labeled binary outcomes. The logistic regression model 
is given by:

[[w]]i = [[c]]i + e.[[b]]i + d.[[a]]i + e.d

f (x) = X−1 − B

(2)
Bs+1 = 2Bs − BsMs B0 = c−1

I

Ms+1 = 2Ms −M2
s M0 = c−1X
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where β = (β1, . . . ,βm) is the m-dimensional regres-
sion coefficients vector and βT is its transpose, yi is the 
observation of binary responses and xi is the feature vec-
tor belonging to the record i. The purpose of using this 
method is to obtain the parameter vector β that maxi-
mizes the log-likelihood function:

By determining the parameters β , the classifier can pre-
dict the class label of new feature vectors.

Methods
Estimating model coefficients
Since logistic regression cannot be found in a closed form, 
model estimation is often accomplished by an iterative 
optimization over the log-likelihood function. As mention 
in “Matrix inversion” section, Newton–Raphson is a popu-
lar numerical iterative method that eventually approaches 
the optimal values of the model parameters. For each itera-
tion, the coefficient estimates are updated by:

where ∇ and H correspond to the gradient and Hessian of 
the log-likelihood function respectively. They are evalu-
ated with the old estimate of the β to determine the cur-
rent estimate and can be computed as follows:

where W is a diagonal matrix with elements defined as 
ai,i = π(1− π) and π is the vector of probabilities.

Gradient
As stated in (6), to compute the gradient, we first need 
to compute the Sigmoid function ( π ). The Sigmoid func-
tion is a mathematical function that has a characteris-
tic S-shaped curve. This function has the property that 
maps the entire number line into a small range, such as 
between 0 and 1.

(3)P(yi = 1|xi;β) =
1

1− e−βT xi

(4)l(β) = −

n
∑

i=1

log
(

1+ e−βT xi
)

(5)βnew = βold −H
−1(βold)∇(βold)

(6)∇(β) =
∂l(β)

∂β
= X

T(y− π)

(7)H(β) =
∂2f

∂β∂βT
= X

T
WX

(8)π(z) =
1

1+ e−z
= (1+ e−z)−1

During the computation of the Sigmoid function, we 
consider both accurate and approximate cases which are 
summarized below.

Accurate Computation The main challenges of comput-
ing the exact value of the Sigmoid function are performing 
exponentiation and matrix inversion operations. To per-
form the matrix inversion operation, we use the solutions 
discussed in “Matrix inversion” section. However, perform-
ing exponentiation by the considered secret sharing tech-
niques is quite challenging.

After each computation party receives the other 
computation parties’ share of e[[zi]] , they computes 
([[e[[z1]]]]1 ∗ [[e

[[z2]]]]2 ∗ · · · ∗ [[e
[[zi]]]]n ), which is equal to 

([[e[[z1]]+[[z2]]+···+[[zi]]]]) . Therefore, each computation party 
has a valid share of [[e[[z]]]] , and uses the MPC-based addi-
tion and matrix inversion operations to compute the exact 
value of the Sigmoid function.

Least Squares Approximation The method to compute the 
exact value of the Sigmoid function might have scalability 
issues due to the large number of multiplications. In order to 
improve the performance, we use the least-squares approxi-
mation of the sigmoid function over the interval [-8,8] 
introduced by Kim et al. [15]. We adapt this approximation 
method and consider the degree 3, 5, and 7 least-squares 
polynomials:

The degree 3 least-squares approximation requires fewer 
multiplications, while the degree 7 polynomial has more 
immeasurable precision.

Hessian
The Hessian matrix H denotes the second partial derivatives 
of the maximum likelihood function l(β) . In every iteration, 
the Hessian matrix has to be updated by the newest β , and 
its inversion has to be computed. To evaluate the Hessian 
matrix, we can consider two different methods. First, we 
can compute the exact value of the Hessian matrix by per-
forming the required MPC-based multiplication. However, 
the exact evaluation of the Hessian matrix is considerably 
expensive in computational terms. To solve this issue, we 
approximate the Hessian matrix with a fixed matrix instead 
of updating it in every iteration. More specifically, we can 
replace the fixed Hessian matrix with its approximation H̃ 
(Eq. 9) that only needs to be computed and inverted.























g3(x) = 0.5+ 1.20096.(x/8)− 0.81562.(x/8)3

g5(x) = 0.5+ 1.53048.(x/8)− 2.3533056.(x/8)3

+1.3511295.(x/8)5

g7(x) = 0.5+ 1.73496.(x/8)− 4.19407.(x/8)3

+5.43402.(x/8)5 − 2.50739.(x/8)7

(9)H̃ =
−1

4
XXT
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Böhning  [29] proved that if H̃−H is positive definite and 
H̃ ≤ H then the convergence of this method is guaranteed. 
Also, because H̃ does not depend on β , we can pre-compute 
the Hessian and its inverse one time and use it in all iterations.

Privacy‑preserving logistic regression training
This work assumes that the result party desires to com-
pute the logistic regression model over collected data by 
different data owners. Each data owner computes multi-
ple shares (based on the number of computation parties) 
of its sensitive data and sends them separately to each 
computation party. Note that each computation party 
receives an equal number of dependent Xi and independ-
ent yi variables. Each computation party should append 
the received shares and their corresponding dependent 
variables in the correct order. Finally, computation parties 
send their computed shares of logistic regression coeffi-
cient to the result party, and the result party, then, simply 
sum these shares together to compute the final result.

We now present our privacy-preserving logistic regres-
sion training algorithms that employ the previously men-
tioned approaches. These algorithms summarize the 
crucial steps in the proposed protocols for both honest 
and dishonest majority security assumptions. In our pro-
posed algorithms, each data owner provides a share of 
data for the computation parties as input. The only out-
put of the algorithm is the computed model coefficients 
β . Notably, we will not employ a convergence check after 
each iteration to prevent unnecessarily revealing infor-
mation about the input. niter specifies the upper bound of 
the number of iterations needed for convergence.

In Algorithm  1, we propose a very accurate privacy-
preserving logistic regression model training protocol. In 
this algorithm, we only employ highly accurate approxi-
mations, such as matrix inversion and fixed Hessian, 
which have a negligible effect on the computation out-
put’s accuracy. Moreover, instead of approximating the 
Sigmoid function, we use our approach introduced in 
“Gradient” section to compute the exact value of it (lines 
8-12).

The primary purpose of proposing Algorithm  2 is to 
achieve a highly efficient privacy-preserving logistic 
regression model training protocol. Various approxi-
mation approaches such as fixed Hessian matrix, least-
square approximation for the Sigmoid function, and 
matrix inversion algorithm are employed to obtain our 
goal. This logistic regression training algorithm demon-
strates how the introduced approximation approaches 
can be combined efficiently to compute the logistic 
regression coefficient in a privacy-preserving manner.

Results
In this section, we first describe computational efficiency 
evaluations in terms of CPU time and memory consump-
tion for the proposed algorithms over a real-world data-
set and generated synthetic data. We finally describe the 
accuracy evaluations of these protocols and theoretically 
discuss the communication cost.

Implementation details
We implemented our proposed algorithms with both 
of the introduced security settings in “Implementation 
details” section using Python programming language. 
Algorithm  1 is implemented using Beaver triple-based 
MPC (Accurate BMPC) and classical MPC (Accu-
rate CMPC). Also, the Beaver triple-based version of 
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Algorithm  2 is called BMPC, and the classical-based 
MPC implementation of this algorithm is called CMPC. 
Moreover, to have a decent comparison, the ordinary 
logistic regression (OLR), which does not use MPC, is 
implemented.

Experiments were performed on an ARM-based M1 
processor with 16GB memory, running a macOS opera-
tion system. Also, to eliminate the impact of network 
latency, we simulated the computing nodes on a single 
computer with multiple threads (each node is considered 
as a thread). Each experiment was performed at least ten 
times and its output’s mean was reported. During the 
validation, we employed both synthetic and real-world 
datasets.

We report the evaluation results concerning computa-
tional efficiency in terms of CPU time and memory con-
sumption and result accuracy. For a fair comparison on 
the efficiency, we used four real-world data sets: Pima 
Indians Diabetes Dataset (PIMA) [30], Low Birth Weight 
Study (LBW) [31], Prostate Cancer Study (PCS) [32], and 
Umaru Impact Study datasets (UIS)[33]. All datasets have 
a single binary outcome variable. To satisfy the demand 
for large-scale studies between multiple research institu-
tions with a large number of records, we also examined 
our protocols with synthetic data sets of varying sizes. 
The synthetic data is composed of up to 1 million records 
spanning up to 3000 features representing most real-
world use cases.

Efficiency
To compare our protocols’ efficiency with an ordinary 
logistic regression, first, we measured the CPU time of 
our protocol when the number of features is constant 
(i.e., 250), and the number of records increases. We, then, 
calculated the CPU time of the protocols when the num-
ber of records is fixed (i.e., 7000), and the number of fea-
tures increases.

The CPU time of the proposed protocols is heavily 
influenced by the number of records and training set fea-
tures. Figures 1 and 2 illustrate the CPU time of imple-
mented protocols based on algorithm 1 (Accurate BMPC 
and Accurate CMPC). As is illustrated in Fig. 1, Accurate 
BMPC has the best results when the number of records 
increases. This protocol computes a logistic regression 
model over a train set of 50000 records and 500 features 
in less than 15 s which is 20 s faster than Accurate CMPC 
protocol and 70 s faster than OLR. Nevertheless, increas-
ing the number of features has a higher impact than OLR. 
As is shown in Fig.  2, using the OLR protocol, a logis-
tic regression model can be trained over a training set 
with 7000 records and 3000 features in around 90 s. This 
model, however, takes about 3 minutes and 5 minutes to 

compute using the Accurate BMPC protocol and Accu-
rate CMPC protocol, respectively. 

Figures 3 and 4 illustrate the CPU time of the protocols 
which are implemented based on algorithm 2 (BMP and 
CMPC). As shown in Fig.  3, both protocols have a bet-
ter performance than OLR when the number of records 
increases and the number of features is fixed. Also, BMPC 
has a considerably better CPU time in comparison with 
CMPC and OLR. However, as is shown in Fig. 4, increas-
ing the number of features has slightly different results. 
Raising the number of features decreases the efficiency 
of all three protocols. CMPC receives the highest impact 
from rising the number of features, but BMPC still has an 
acceptable efficiency level. For example, BMPC can train 
a model with 7000 records and 2500 features in less than 

Fig. 1  Efficiency comparison for increasing number of records using 
accurate algorithm 1

Fig. 2  Efficiency comparison for increasing number of features using 
accurate algorithm 1
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one minute, 7 s higher than OLR, and four times better 
than CMPC. Therefore, we can conclude that CMPC is 
not the right choice when we have a dataset with a con-
siderable number of features.

Besides, to measure the efficiency in terms of memory 
consumption, a python module named “memory_pro-
filer” [34] has been utilized. Table  1 indicates memory 
consumption for  the different introduced protocols and 
ordinary logistic regression. All implemented protocols 
in both security settings consume remarkably less mem-
ory during the training process. As is described in the 
Table 1, to train a logistic regression model over a dataset 
with 50,000 records and 200 features, the OLR protocol 
requires about 30 GB of memory. However, the BMPC 
and Accurate BMPC have about 8 GB of memory to train 
this model. Also, the CMPC and Accurate CMPC proto-
cols have a better consumption rate than BMPC, and less 
than 5 GB of memory is needed to train such a model.

Accuracy
One of the primary subjects that we considered in exam-
ining our protocols was accuracy. We measured accuracy 
based on the estimated model parameters’ precision dur-
ing the training phase over the Low Birth Weight Study 
dataset. To do this, we compared the obtained vector 
of coefficient β from our protocols with the ones esti-
mated using the OLR protocol. As Table 2 presents, the 
Accurate BMPC and Accurate CMPC protocols’ model 
parameters are almost the same as the model param-
eters estimated using OLR protocol. Moreover, the 
model parameters estimated from protocols based on 
the algorithm 2 (BMPC and CMPC), which employ vari-
ous approximations, have an acceptable level of accuracy 
compared to the model parameters estimated using OLR 
protocol.

Regarding the introduction of several approximation 
schemes in BMPC and CMPC protocols, as well as gain-
ing a better understanding of the accuracy of these pro-
tocols, we compared the prediction accuracy achieved by 
these protocols with that obtained from the OLR proto-
col. To do this, we calculated the percentage (%) of the 
correct predictions of estimated models produced on 
four different datasets (25% of training samples were 
assigned to the test set) in various settings based on the 
degree of Sigmoid function approximation. All the accu-
racy measurement results are summarized in Table  3. 
This table presents the average prediction accuracy per-
centage when threshold = 0.5 and the AUC (Area Under 
the Curve), which estimates a binary classifier’s quality. 
Moreover, based on the information provided in Table 2, 
varying the Sigmoid function approximation degrees 
used in BMPC and CMPC protocols do not significantly 
affect the estimated model’s accuracy over the chosen 
datasets.

Communication cost
In multi-party computation protocols, communication 
cost depends on multiple elements, such as the number 
of computations parties, iterations, operations, and secu-
rity settings. Moreover, the Newton–Raphson method, 
which is considered as our optimization approach, incurs 
considerable computation and communication costs on 
our protocols. In this work, our main focus was to reduce 
the computation cost by reducing the number of opera-
tions using multiple approximations.

Our experiments have been conducted on a single 
PC and focused on the computation cost. As it is com-
monly done in the literature  [25], we thus provide an 
indication on the communication cost as well. To do this, 
first, we compute the communication cost for the main 

Fig. 3  Efficiency comparison for increasing number of records using 
approximation-based algorithm 2

Fig. 4  Efficiency comparison for increasing number of features using 
approximation-based algorithm 2
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Table 1  Memory consumption comparison of our proposed protocols using generated synthetic datasets

Records number Feature number OLR BMPC CMPC Accurate BMPC Accurate CMPC

10,000 50 3666 1325 688 1316 888

20,000 70 12,559 1717 1016 1665 1325

30,000 90 22,736 2743 1702 2654 2033

40,000 100 29,110 3775 2337 3622 2672

50,000 100 34,394 4575 2878 4406 3220

50,000 200 34,512 8516 5437 8013 5770

Table 2  A comparison between model parameters β learned using the proposed protocols and ordinary logistic regression protocol 
over LBW dataset

β Ordinary LR Accurate BMPC BMPC Accurate CMPC CMPC

3 5 7 3 5 7

β1 0.01574 0.01577 0.01761 0.01580 0.01480 0.01574 0.02214 0.01793 0.01630

β2 0.01127 0.01123 0.01171 0.01061 0.01006 0.01127 0.01534 0.01266 0.01166

β3 0.78666 0.78152 0.67763 0.62479 0.60392 0.78662 0.95081 0.81191 0.77010

β4 −0.47132 −0.46992 −0.48975 −0.44423 −0.42170 −0.47131 −0.63960 −0.52621 −0.48340

β5 −1.32410 −1.31870 −1.24442 −1.13786 −1.08974 −1.32405 −1.68676 −1.41595 −1.32408

β6 −0.75584 −0.75594 −0.86971 −0.78142 −0.73330 −0.75583 −1.09894 −0.88944 −0.80596

β7 −2.20748 −2.20104 −2.48191 −2.23117 −2.09511 −2.20743 −3.15262 −2.56252 −2.33208

β8 −0.96060 −0.95756 −0.99906 −0.90459 −0.85667 −0.96058 −1.30317 −1.07358 −0.98838

β9 −0.24569 −0.24476 −0.21884 −0.20160 −0.19465 −0.24568 −0.30509 −0.25879 −0.24367

Table 3  Accuracy comparison result for real-word datasets with different settings

Dataset Records num Feature num g(x) degree CMPC BMPC OLR

Accuracy AUC​ Accuracy AUC​ Accuracy AUC​

3 71.87% 0.740 71.87% 0.740 71.87% 0.740

PIMA 768 9 5 71.87% 0.741 71.87% 0.740 71.87% 0.740

7 71.87% 0.741 71.87% 0.741 71.87% 0.741

No approx – – – – 71.87% 0.741

3 81.05% 0.842 81.05% 0.846 80% 0.846

PCS 379 10 5 81.05% 0.845 81.05% 0.847 80% 0.847

7 81.05% 0.847 81.05% 0.848 81.05% 0.848

No approx – - – – 81.05% 0.848

3 64.58% 0.519 64.58% 0.519 64.58% 0.519

LBW 189 10 5 64.58% 0.519 64.58% 0.519 64.58% 0.519

7 62.5% 0.519 62.5% 0.517 64.58% 0.519

No approx – – – – 62.5% 0.523

3 73.61% 0.651 73.61% 0.651 73.61% 0.651

UIS 575 9 5 72.91% 0.652 72.91% 0.652 72.91% 0.652

7 72.91% 0.655 73.61% 0.651 72.91% 0.655

No approx – – – – 72.22% 0.656
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operations we employ, e.g., addition and multiplication, 
in both honest majority and dishonest majority settings. 
We then calculate the total communication cost for the 
entire protocol by aggregating the costs of each individ-
ual operation over several iterations.

In MPC-based protocols, addition operation in both 
security settings does not require any communication 
between the computation parties. However, multiplica-
tion operation requires multiple communication rounds. 
In the honest majority setting and with three computa-
tion parties, Bogdanov [35] explained that each time per-
forming multiplication operation requires exchanging 15 
messages between the computation parties. If we con-
sider each message with the size of 32 bits, the communi-
cation cost to perform a multiplication operation will be 
420 bits. Besides, executing a logistic regression protocol 
once  requires (CMPC) requires ten iterations, and mul-
tiplication protocol will be performed in each iteration 
between 100 and 300 times.2 Therefore, to compute the 
logistic regression model in an honest majority setting 
with our protocol, at least 420 Kb data will be exchanged.

Communication costs in the dishonest majority setting 
are notably lower (i.e. due to Beaver triples) than the hon-
est majority setting. The multiplication procedure in this 
method is split into the offline and online phases. Multi-
plication triples will be generated and distributed during 
the offline phase before the computation parties’ inputs 
are associated. Therefore, there is no communication cost 
in this phase. During the online phase and in the two-
party setting, each computation party sends only two 
messages to the other party to perform the multiplication 
operation. If we consider each message with the size of 
32 bits, 128-bits data need to be exchanged for one-time 
multiplication in this setting. Accordingly, the computa-
tion time is 3.75 times less than the honest majority set-
ting. For the whole logistic regression protocol with 10 
iterations, at least 125 Kb of data will be exchanged.

Conclusions
There is an increasing interest in applying machine learn-
ing algorithms to sensitive data, such as medical data. In 
this paper, we described novel algorithms for implement-
ing secure and private logistic regression training among 
distributed parties by using multi-party computation 
protocols. We evaluated the performance of our algo-
rithms through experiments on real-world and synthetic 
datasets to show the scalability of our solutions, mainly 
when they are applied to a dataset with a large number of 
records and features. Our experiments also showed that 

our algorithms achieve high accuracy while maintaining 
a reasonable level of efficiency. As future work, we are 
planning to extend our approach to support secure and 
efficient multi-class logistic regression.

Abbreviations
LR: Logistic regression; MPC: Multi-party computation; GLORE: Grid binary 
logistic regression; SMAC-GLORE: Secure Multi-pArty Computation Grid LOgis-
tic REgression; BMPC: Beaver triple-based multi-party computation; CMPC: 
Classical multi-party computation; OLR: Ordinary logistic regression; PIMA: 
Pima Indians diabetes dataset; LBW: Low birth weight study; PCS: Prostate 
cancer study; UIS: Umaru impact study datasets.

Acknowledgements
We thank Aida Plocco and Sytze Tempel for their contribution to the idea of 
this study.

Authors’ contributions
The author ARG contributed the majority of the writing and conducted major 
parts of the study. FT wrote a part of this paper, provided detailed edits and 
critical suggestions. XJ provided the motivation for this work and helpful com-
ments. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The data used in the present study are publicly and freely available and have 
been downloaded from public data repositories. All datasets and codes used 
in this study are freely available at: https://​github.​com/​alire​zagha​vamip​our/​
pplr_​ss

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Author details
1 University of Groningen, Nijenborgh 9, Groningen, Netherlands. 2 UTHealth 
School of Biomedical Informatics, The University of Texas, Houston, USA. 

Received: 26 April 2021   Accepted: 22 February 2022

References
	1.	 Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regression. 

New York: Wiley; 2013.
	2.	 Boxwala AA, Kim J, Grillo JM, Ohno-Machado L. Using statistical and 

machine learning to help institutions detect suspicious access to elec-
tronic health records. J Am Med Inform Assoc. 2011;18(4):498–505.

	3.	 Riley RD, Ensor J, Snell KI, Harrell FE, Martin GP, Reitsma JB, Moons KG, Col-
lins G, van Meden M. Calculating the sample size required for developing 
a clinical prediction model. Bmj 2020;368.

	4.	 Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving 
genomic diagnoses without revealing patient genomes. Science. 
2017;357(6352):692–5.

	5.	 Wu Y, Jiang X, Kim J, Ohno-Machado L. Grid Binary LOgistic REgression 
(GLORE): building shared models without sharing data. J Am Med Inform 
Assoc. 2012;19(5):758–764.  https://​doi.​org/​10.​1136/​amiaj​nl-​2012-​000862.

2  The exact numbers of iterations and multiplications depend on the degree of 
least-squares Sigmoid approximation and the choice of a good start value for 
the inversion operations.

https://github.com/alirezaghavamipour/pplr_ss
https://github.com/alirezaghavamipour/pplr_ss
https://doi.org/10.1136/amiajnl-2012-000862


Page 11 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making           (2022) 22:89 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	6.	 Shi H, Jiang C, Dai W, Jiang X, Tang Y, Ohno-Machado L, Wang S. Secure 
multi-pArty computation grid LOgistic REgression (SMAC-GLORE). BMC 
Med Inform Decis Mak. 2016;16(3):89.

	7.	 Xie W, Wang Y, Boker SM, Brown DE. Privlogit: efficient privacy-preserving 
logistic regression by tailoring numerical optimizers. 2016. arXiv:​1611.​
01170.

	8.	 Mohassel P, Zhang Y. Secureml: a system for scalable privacy-preserving 
machine learning. In: 2017 IEEE symposium on security and privacy (SP). 
IEEE. 2017, pp. 19–38.

	9.	 Beaver D. Commodity-based cryptography. In: Proceedings of the 
twenty-ninth annual ACM symposium on theory of computing. 1997, pp. 
446–55.

	10.	 De Cock M, Dowsley R, Horst C, Katti R, Nascimento AC, Poon W-S, Truex 
S. Efficient and private scoring of decision trees, support vector machines 
and logistic regression models based on pre-computation. IEEE Trans 
Dependable Secure Comput. 2017;16(2):217–30.

	11.	 Gentry C, Boneh D. A fully homomorphic encryption scheme, vol. 20. 
Stanford: Stanford University; 2009.

	12.	 Yoo JS, Hwang JH, Song BK, Yoon JW. A bitwise logistic regression 
using binary approximation and real number division in homomorphic 
encryption scheme. In: International conference on information security 
practice and experience. Springer. 2019, pp. 20–40.

	13.	 MLD R, Fienberg S, Nardi Y. Secure multiparty linear and logistic regres-
sion based on homomorphic encryption. 2020. https://​www.​cs.​cmu.​edu.

	14.	 Carpov S, Gama N, Georgieva M, Troncoso-Pastoriza JR. Privacy-preserv-
ing semi-parallel logistic regression training with fully homomorphic 
encryption. BMC Med Genomics. 2020;13(7):1–10.

	15.	 Kim M, Song Y, Wang S, Xia Y, Jiang X. Secure logistic regression based 
on homomorphic encryption: design and evaluation. JMIR Med Inform. 
2018;6(2):19.

	16.	 Han K, Hong S, Cheon JH, Park D. Logistic regression on homomorphic 
encrypted data at scale. In: Proceedings of the AAAI conference on 
artificial intelligence, vol. 33. 2019. pp. 9466–71.

	17.	 Han K, Hong S, Cheon J, Park D. Efficient logistic regression on large 
encrypted data. IACR Cryptol. ePrint Arch. 2018; Query date: 2020-06-24 
08:59:23.

	18.	 Djonatan P. Privacy-preserving analytics: secure logistic regression. 2019. 
Query date: 2020-06-24 08:59:23. https://​dr.​ntu.​edu.​sg/​handle/​10356/​
77126.

	19.	 Du W, Li A, Li Q. Privacy-preserving multiparty learning for logistic regres-
sion. In: International conference on security and privacy in communica-
tion systems. Springer. 2018, pp. 549–68.

	20.	 Chaudhuri K, Monteleoni C. Privacy-preserving logistic regression. In: 
Advances in neural information processing systems. 2009, pp. 289–96.

	21.	 El Emam K, Samet S, Arbuckle L, Tamblyn R, Earle C, Kantarcioglu M. A 
secure distributed logistic regression protocol for the detection of rare 
adverse drug events. J Am Med Inform Assoc. 2013;20(3):453–61.

	22.	 Kim M, Lee J, Ohno-Machado L, Jiang X. Secure and differentially private 
logistic regression for horizontally distributed data. IEEE Trans Inf Foren-
sics Secur. 2019;15:695–710.

	23.	 Bogdanov D, Laur S, Willemson J. Sharemind: a framework for fast 
privacy-preserving computations. In: European symposium on research 
in computer security. Springer. 2008, pp. 192–206.

	24.	 Randmets J. Programming languages for secure multi-party computation 
application development. 2017.

	25.	 Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure 
multi-party computation for data mining applications. Int J Inf Secur. 
2012;11(6):403–18.

	26.	 Beaver D. Efficient multiparty protocols using circuit randomization. In: 
Annual international cryptology conference. Springer. 1991, pp. 420–32.

	27.	 Nardi Y, Fienberg SE, Hall RJ. Achieving both valid and secure logistic 
regression analysis on aggregated data from different private sources. J 
Priv Confid 2012;4(1).

	28.	 Agresti A. Categorical data analysis. 2003, p. 482.
	29.	 Böhning D. The lower bound method in probit regression. Comput Stat 

Data Anal. 1999;30(1):13–7.
	30.	 Dua D, Graff C. UCI machine learning repository. 2017. http://​archi​ve.​ics.​

uci.​edu/​ml.
	31.	 lbw: Low Birth Weight study data. 2019. https://​rdrr.​io/​rforge/​Logis​ticDx/​

man/​lbw.​html.

	32.	 pcs: Prostate Cancer Study data. 2019. https://​rdrr.​io/​rforge/​Logis​ticDx/​
man/​pcs.​html.

	33.	 uis: UMARU IMPACT Study data. 2019. https://​rdrr.​io/​rforge/​Logis​ticDx/​
man/​uis.​html.

	34.	 memory-profiler. 2021. https://​pypi.​org/​proje​ct/​memory-​profi​ler/.
	35.	 Bogdanov D. Sharemind: programmable secure computations with 

practical applications. Ph.D. Thesis, Tartu University. 2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1611.01170
http://arxiv.org/abs/1611.01170
https://www.cs.cmu.edu
https://dr.ntu.edu.sg/handle/10356/77126
https://dr.ntu.edu.sg/handle/10356/77126
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html
https://rdrr.io/rforge/LogisticDx/man/uis.html
https://rdrr.io/rforge/LogisticDx/man/uis.html
https://pypi.org/project/memory-profiler/

	Privacy-preserving logistic regression with secret sharing
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Related work
	Preliminaries
	System model
	Secret sharing
	Addition and multiplication
	Matrix inversion
	Logistic regression

	Methods
	Estimating model coefficients
	Gradient
	Hessian
	Privacy-preserving logistic regression training

	Results
	Implementation details
	Efficiency
	Accuracy
	Communication cost

	Conclusions
	Acknowledgements
	References


